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A Hybrid PEE-FDTD Algorithm for Accelerated

Time Domain Analysis of Electromagnetic

Waves in Shielded Structures
Michal Mrozowski, Member, IEEE

Abstract— A new algorithm for the time domain analysis of

electromagnetic waves in shielded structures is presented. The
algorithm combines the FDTD with a recently developed partial

eigenfunction expansion (PEE) scheme to obtain acceleration
in numerical calculation and savings in computer memory. An

example of the application of the algorithm is presented showing
an overall speed improvement.

I. INTRODUCTION

T IME DOMAIN techniques are gaining increased popu-

larity in the analysis of electromagnetic waves because

of their ability to treat complicated geometries over a wide

frequency range. Because the most popular time domain

algorithms are explicit, the stability of the algorithm puts a

restriction on the maximum allowable time step. Additionally,

to obtain fine resolution of fields near singularities, mesh

size is reduced thereby increasing the computer storage. The

computation time and memory requirements are, therefore,

critical parameters for time domain algorithms. Because of

this, some research effort has recently been devoted to the

acceleration of the traditional methods by the application of

the signal processing [2] techniques, graded mesh schemes [1]

or elimination of redundant field components [3].

This contribution presents a new algorithm for shielded

structures that consists of the replacement of the FDTD

calculation in homogeneous shielded subregions by eigen-

function expansion. The eigenfunction expansion schemes in

time domain proposed in [4] rely on the expansion of the

unknown functions of selected space variables into series of

basis functions and the application of method of moment

procedure to find the expansion coefficients. One version of the

algorithm, called the Partial Eigenfunction Expansion (PEE), is

obtained if the function expansion is done with respect to two

selected space coordinates while the third spatial coordinate

and time are discretized in a way analogical to the finite

difference scheme. By combining such an approach with a

classical FDTD algorithm, an improvement in speed can be

obtained for an important class of shielded structures.
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Fig. 1 A structure discretized along one coordinate.

II. FORMULATION

As the FDTD is a well known technique, let us begin

with the presentation of the second scheme, namely the

Partial Eigenfunction Expansion (PEE). Consider a dielectric

inhomogeneity located in a rectangular waveguide (Fig. 1). In

the PEE, the computational space is sliced into subdomains and

the fields are expanded on each subdomain (slice) into series of

expansion functions that depend only on transverse coordinates

and fulfill the boundary conditions on the guide periphery. The

function expansion is done in two dimensions for each slice

separately, while the variations in the third spatial dimension

and time are handled using the finite difference approxima-

tions. Suppose the structure was divided into K slices in the z

direction and the slices are uniformly spaced by the distance

Ad. Using the finite difference approximation of derivatives

in the z directions, the Maxwell’s equations can be written in

the following operator form

where j~ and gk are vector functions representing the electric

and magnetic field at the k-th slice and

In the above equations, we have denoted a unit vector in the

z direction by 2.
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The fields are now expanded separately on each slice

according to

where ai~, b;, are the expansion coefficients (time dependent)

and ~i~ (3, y), gik (z, y) are the basis functions. The next step
is to introduce the expansion (5) into (3) and replace time

derivatives by finite difference formulas. This results in equa-

tions in which the only unknowns, for a fixed time instant,

are the expansion coefficients at all slices of the structure. To

evaluate the expansion coefficients we take the inner product

of equations valid for a given slice with expansion functions

and use the orthogonality property of the expansion functions.

As a result, we arrive at [4]:

&
n =~ .–l + ~~~ b.–~/2

~n+l/2 = bn-1/2 + ~~Ban— —— (4)—

where At is the time step, ~ and ~ are column vectors

containing expansion coefficients for all slices and superscript

n denotes the time step. The matrices ~ and ~ contain the

inner products and have the following ~ructur~

The elements of the submatrices are given

Equation (6) shows that expansion coefficients for all slices

are updated at each time step as a result of mutual interac-

tions of fields due to the inhomogeneity introduced by space

dependence of constitutive parameters, As far as numerical

cost is concerned, the most critical point in the PEE algorithm

is the calculation of the inner products on inhomogeneous

slices. However, for inhomogeneous slices a classical FDTD

algorithm can be used. Combining these two time domain

techniques, we create a hybrid method in which different

algorithms are used in different parts of the computational

space. The FDTD is used in the regions in which a fine

resolution of field is necesswy (eg. near edges, media inter-

faces), and the PEE is applied in the homogeneous subregions.

This hybrid approach results in savings in numerical effort

and computer memory. This is because the PEE is extremely

efficient for homogeneous slices as matrices &k, ~ ~ and

~ k, ~ k are diagonal, so that the computations are fast,
especially when the expansion functions are chosen in such a

way that they constitute a set of eigenfunctions of the Laplace

operator defined on 2D region forming a slice. In that case,

each expansion function satisfies the boundary condition and

field equations globally over entire slice. As a result, very

few expansion terms are needed to accurately describe field at

each slice. The FDTD and PEE algorithms are interfaced at a

x
a

Fig. 2 Geometry of the guide used in the numerical test showing FDTD and

PEE meshes. (Slab centered with respect to z = a/2, G. = 2.5; dimensions:

h=4mm, w=4mm, a=20 mm, b=6 mm.)

TABLE I

COMPARISON OF THE RESULTS AND CPU TIMES (DELL 486/66) FOR THE

CUTOFF FREQUENCIES OF EHI I MODE IN THE 20 BY 6 mm RECTANGULAR

GUIDE LOADED WITH A DIELECTRIC SLAB. .s, = 2.5, w = 4mm, h = 4 mm

USING A HYBRID ALGORITHM WITH NUMBER OF EXPANSION FUNCTIONS lV

AND THE LOCALIZATION OF THE INTERFACE PLANES AS PARAMETERS

N PEE-FDTD Emo~ CPU CPU CPU Speed up rel.

A. to FDTD FDTD part PEE part combined to FDTD (53s)

Interface of algorithms at z = 7..5,z = 12.5 mm

1 20,2075 GHz + 0.1% 14s 4s 18s 2.9

3 20.1975 GHz +0.05% 14s 9s 23s 2.3

5 20,1975 GHz +0.05% 148 136 27s 1.96

Interfwe of a,lgmithjm d z = 5, z = 15 mm

1 20.1875 GHz, o% 28s 3s 31s 1.7

3 20.1875 GHz o% 28s 6s 34s 1.55

common slice. The transition form the FDTD to PEE is done

in the following way. Given a field distribution at the z = ~k,

provided by the FDTD part of the algorithm, the expansion

coefficients at this slice are found by taking the inner product

with each basis functions of the PEE. To switch from PEE to

FDTD the series (3) are calculated at the interface plane at the

points required by FDTD.

III. NUMERICAL EXAMPLE

In order to verify the hybrid algorithm, the cutoff frequency

of the EH11 of a rectangular guide loaded with a dielectric

slab shown in Fig. 2 was computed and compared with the

results obtained with a classical FDTD technique. For both

algorithms the identical excitation, space discretization (Ad =

.5 mm), time step, and number of samples were assumed. The

results are given in Table I. For the FDTD algorithm alone,

the CPU time for the assumed discretization mesh was 53 s.

For the hybrid algorithm, the slab region was treated with the

FDTD and the lateral homogeneous regions were calculated

with PEE. The CPU time depends on the localization of the

interface plane and the number of expansion functions used in

the PEE part of the algorithm. When the interface is at Z1 =

7.5 and T2 =12.5 mm, ie. when the FDTD mesh is terminated

only one slice away from the inhomogeneous region, the

CPU time of the hybrid algorithm varies from 18 s (for one

expansion function) to 27 s (for five expansion functions), with
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most of the time (14 s) consumed by the FDTD computations.

The error introduced by low number of expansion function

is the largest if only one term is used, but for this structure

it is less than 0.1970compared the result obtained from pure

FDTD calculations. The error decreases as the interface plane

is moved away from the inhomogeneity. This is due to the

fact that higher-order terms in the field expansion correspond

to higher-order waves traveling in the lateral direction. If the

interface planes are located at ~1 = 5 and X2 = 15 mm, only

one term in the PEE part is sufficient to obtain exactly the

same results as with purely FDTD technique. The CPU time

for this case is 31 s, of which 28 s is spent in the FDTD part.

IV. CONCLUSIONS

A new hybrid PEE-FDTD algoritlim for the time domain

analysis of electromagnetic waves in shielded structures was

introduced. The obtained results indicate that it is possible to

obtain the acceleration of time domain calculation by using

the PEE algorithm in homogeneous parts of the structure. The

results presented in this letter indicate that it is possible to

obtain improvement in the speed of time domain computation

of 3D and 2D shielded structures in which the homogeneous

regions are predominant, such as microstrip lines, coplanar

guides, and discontinuities in planar guides.
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