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A Hybrid PEE-FDTD Algorithm for Accelerated
Time Domain Analysis of Electromagnetic
Waves in Shielded Structures

Michal Mrozowski, Member, IEEE

Abstract— A new algorithm for the time domain analysis of
electromagnetic waves in shielded structures is presented. The
algorithm combines the FDTD with a recently developed partial
eigenfunction expansion (PEE) scheme to obtain acceleration
in numerical calculation and savings in computer memory. An
example of the application of the algorithm is presented showing
an overall speed improvement.

I. INTRODUCTION

IME DOMAIN techniques are gaining increased popu-

larity in the analysis of electromagnetic waves because
of their ability to treat complicated geometries over a wide
frequency range. Because the most popular time domain
algorithms are explicit, the stability of the algorithm puts a
restriction on the maximum allowable time step. Additionally,
to obtain fine resolution of fields near singularities, mesh
size is reduced thereby increasing the computer storage. The
computation time and memory requirements are, therefore,
critical parameters for time domain algorithms. Because of
this, some research effort has recently been devoted to the
acceleration of the traditional methods by the application of
the signal processing [2] techniques, graded mesh schemes [1]
or elimination of redundant field components [3].

This contribution presents a new algorithm for shielded
structures that consists of the replacement of the FDTD
calculation in homogeneous shielded subregions by eigen-
function expansion. The eigenfunction expansion schemes in
time domain proposed in [4] rely on the expansion of the
unknown functions of selected space variables into series of
basis functions and the application of method of moment
procedure to find the expansion coefficients. One version of the
algorithm, called the Partial Eigenfunction Expansion (PEE), is
obtained if the function expansion is done with respect to two
selected space coordinates while the third spatial coordinate
and time are discretized in a way analogical to the finite
difference scheme. By combining such an approach with a
classical FDTD algorithm, an improvement in speed can be
obtained for an important class of shielded structures.
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Fig. 1 A structure discretized along one coordinate. .

II. FORMULATION

As the FDTD is a well known technique, let us begin
with the presentation of the second scheme, namely the
Partial Eigenfunction Expansion (PEE). Consider a dielectric
inhomogeneity located in a rectangular waveguide (Fig. 1). In
the PEE, the computational space is sliced into subdomains and
the fields are expanded on each subdomain (slice) into series of
expansion functions that depend only on transverse coordinates
and fulfill the boundary conditions on the guide periphery. The
function expansion is done in two dimensions for each slice
separately, while the variations in the third spatial dimension
and time are handled using the finite difference approxima-
tions. Suppose the structure was divided into K slices in the z
direction and the slices are uniformly spaced by the distance
Ad. Using the finite difference approximation of derivatives
in the 7 directions, the Maxwell’s equations can be written in
the following operator form
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where f; and g, are vector functions representing the electric
and magnetic field at the k-th slice and
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In the above equations, we have denoted a unit vector in the
z direction by Zz.

Ve x (+)

LIQCt = X () Lé:z =

_____—vt
popk(x,y)

1051-8207/94$04.00 © 1994 IEEE



324 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 4, NO. 10, OCTOBER 1994

The fields are now expanded separately on each slice

according to
= Z @iy, (t)f’bk (ZL', y)

gk = Zbik (t)gir, (%, y)
k=1...K @)

where a;, , b;, are the expansion coefficients (time dependent)
and f; (%,y),9:,(x,y) are the basis functions. The next step
is to introduce the expansion (5) into (3) and replace time
derivatives by finite difference formulas. This results in equa-
tions in which the only unknowns, for a fixed time instant,
are the expansion coefficients at all slices of the structure. To
evaluate the expansion coefficients we take the inner product
of equations valid for a given slice with expansion functions
and use the orthogonahty property of the expansion functions.
As a result, we arrive at [4]:

Qn — n~—1+Atébn—1/2
bn+l/2 bn 1/2+At£Qn (4)

where At is the time step, ¢ and b are column vectors
containing expansion coefficients for all slices and superscript
n denotes the time step. The matrices A and B contain the
inner products and have the following structure -

A =qdiag[A'*, A"*] B =qdiag[B'", B"*] (5)

The elements of the submatrices are given
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Equation (6) shows that expansion coefficients for all slices
are updated at each time step as a result of mutual interac-
tions of fields due to the inhomogeneity introduced by space
dependence of constitutive parameters. As far as numerical
cost is concerned, the most critical point in the PEE algorithm
is the calculation of the inner products on inhomogeneous
slices. However, for inhomogeneous slices a classical FDTD
algorithm can be used. Combining these two time domain
techniques, we create a hybrid methdd in which different
algorithms are used in different parts of the computational
space. The FDTD is used in the regions in which a fine
resolution of field is necessary (eg. near edges, media inter-
faces), and the PEE is applied in the homogeneous subregions.
This hybrid approach results in savings in numerical effort
and computer memory. This is because the PEE is extremely
efficient for homogeneous slices as matrices A’ k , A k. and
B'*,B"* are diagonal, so that the computations are fast,
especmlly when the expansion functions are chosen in such a
way that they constitute a set of eigenfunctions of the Laplace
operator defined on 2D region forming a slice. In that case,
each expansion function satisfies the boundary condition and
field equations globally over entire slice. As a result, very
few expansion terms are needed to accurately describe field at
each slice. The FDTD and PEE algorithms are interfaced at a
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Fig. 2 Geometry of the guide used in the numerical test showmg FDTD and
PEE meshes. (Slab centered with respect to = a/2, ¢, = 2.5; dimensions:
h=4mm w=4mm,a=20 mm, b =6 mm.,)

TABLE I
COMPARISON OF THE RESULTS AND CPU TmvEs (DELL 486/66) FOR THE
CUTOFF FREQUENCIES OF £ H 11 MODE IN THE 20 BY 6 mm RECTANGULAR
GUIDE LOADED WITH A DIELECTRIC SLAB. €, = 2.5, w = 4mm, h = 4 mm
USING A HYBRID ALGORITHM WITH NUMBER OF EXPANSION FUNCTIONS NV
AND THE LOCALIZATION OF THE INTERFACE PLANES AS PARAMETERS

N | PEE-FDTD Error CPU | CPU CPU Speed up rel.
rel. to FDTD | FDTD part | PEE part | combined | to FDTD (53s)
Interface of algorithms at z = 7.5,2 = 12.5 mm
1 || 20.2075 GHz + 0.1% 14s 4s 18s 2.9
3 || 20.1975 GHz +0.05% 14s 9s 23s 2.3
5 1| 20.1975 GHz +0.05% 14s 13s 27s 1.96
Interface of algorithms at z = 5,z = 15 mm v
1 | 20.1875 GHz 0% 28s 3s 31s 1.7
3 || 20.1875 GHz 0% 28s 6s 34s 1.55

common slice. The transition form the FDTD to PEE is done
in the following way. Given a field distribution at the z = 2,
provided by the FDTD part of the algorithm, the expansion
coefficients at this slice are found by taking the inner product
with each basis functions of the PEE. To switch from PEE to
FDTD the series (3) are calculated at the interface plane at the
points required by FDTD.

III. NUMERICAL EXAMPLE

In order to verify the hybrid algorithm, the cutoff frequency
of the EH1; of a rectangular guide loaded with a dielectric
slab shown in Fig. 2 was computed and compared with the
results obtained with a classical FDTD technique. For both
algorithms the identical excitation, space discretization (Ad =
.5 mm), time step, and number of samples were assumed. The
results are given in Table I. For the FDTD algorithm alone,
the CPU time for the assumed discretization mesh was 53 .
For the hybrid algorithm, the slab region was treated with the
FDTD and the lateral homogeneous regions were calculated
with PEE. The CPU time depends on the localization of the
interface plane and the number of expansion functions used in
the PEE part of the algorithm. When the interface is at z; =
7.5 and z2 =12.5 mm, ie. when the FDTD mesh is terminated
only one slice away from the 1nhomogeneous region, the
CPU time of the hybrid algorithm varies from 18 s (for one
expansion function) to 27 s (for five expansion functions), with
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most of the time (14 s) consumed by the FDTD computations.
The error introduced by low number of expansion function
is the largest if only one term is used, but for this structure
it is less than 0.1% compared the result obtained from pure
EDTD calculations. The error decreases as the interface plane
is moved away from the inhomogeneity. This is due to the
fact that higher-order terms in the field expansion correspond
to higher-order waves traveling in the lateral direction. If the
interface planes are located at z; = 5 and x5 = 15 mm, only
one term in the PEE part is sufficient to obtain exactly the
same results as with purely FDTD technique. The CPU time
for this case is 31 s, of which 28 s is spent in the FDTD part.

IV. CONCLUSIONS

A new hybrid PEE-FDTD algorithm for the time domain
analysis of electromagnetic waves in shielded structures was
introduced. The obtained results indicate that it is possible to
obtain the acceleration of time domain calculation by using

the PEE algorithm in homogeneous parts of the structure. The
results presented in this letter indicate that it is possible to
obtain improvement in the speed of time domain computation
of 3D and 2D shielded structures in which the homogeneous
regions are predominant, such as microstrip lines, coplanar
guides, and discontinuities in planar guides.

REFERENCES

[1] S. Xiao, R. Valdieck, and H. Jin, "A fast two dimensional FDTD fuil-
wave analyser with adaptive mesh size," IEEE MTT-S Int. Symp. Dig. .
vol. 2, pp. 783-786, June 1992.

[2] W. Ko and R. Mittra, "A combination of FD-TD and Prony methods
for analyzing microwave integrated circuits," IEEE Trans. Microwave
Theory Tech.. vol. 39, pp. 2176-2181, Dec. 1991.

[3] M. Okoniewski, "Vector wave equation 2-D-FDTD method for guided
wave problems," IEEE Microwave and Guided Wave Lett., vol. 3, pp.
307-309, Sept. 1993.

[4] M. Mrozowski, "Function expansion algorithms for the time domain
analysis of shielded structures supporting electromagnetic waves," J.
Numerical Modelling, vol. 7, pp. 77-84, Mar. 1994.



